Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
↳ QTRS
↳ DirectTerminationProof
Q restricted rewrite system:
The TRS R consists of the following rules:
f(0) → 1
f(s(x)) → g(x, s(x))
g(0, y) → y
g(s(x), y) → g(x, +(y, s(x)))
+(x, 0) → x
+(x, s(y)) → s(+(x, y))
g(s(x), y) → g(x, s(+(y, x)))
Q is empty.
We use [23] with the following order to prove termination.
Lexicographic path order with status [19].
Precedence:
f1 > 1
f1 > g2 > +2 > s1
Status:
g2: [1,2]